
1

Revolutionizing claims
adjudication using generative AI

Contents

Revolutionizing claims adjudication using generative AI 1

Executive summary 3

Introduction 4

The challenge: Rising cost and complexity of claims management 5

Our approach 6

Our detailed solution 8

Service and model selection 8

Data collection, preparation and ingestion 10

Customized model creation 11

POC model evaluation 16

Fine-tuning the model 17

Conclusion 19

About the author 19

References 20

Revolutionizing claims adjudication using generative AI 2

Revolutionizing claims adjudication using generative AI 3

Executive summary

The US healthcare industry faces increasing inflation and labor costs, prompting CIOs, IT leaders
and business professionals to seek cost reductions and efficiency improvements. This environment
has accelerated innovation, with generative AI (gen AI) emerging as a significant disruptor. According
to the 2024 Gartner report, AI/ML is expected to be a top priority by 2026, with 79% of respondents
identifying gen AI as a major game changer in the next three years.

Source: https://emt.gartnerweb.com/ngw/globalassets/en/information-technology/images/infographics/2024-cio-agenda/2024-

cio-agenda-infographics/2024-cio-agenda-banking-and-investment-infographic

However, the adoption of gen AI introduces risks, including heightened cybersecurity threats and
ethical challenges. Despite these concerns, our comprehensive strategy balances innovation with
robust safeguards. This whitepaper presents a detailed solution for implementing gen AI in claims
adjudication, addressing the associated risks and mitigation strategies.

Technologies most likely to be implemented by 2026

AI/ML

Low-code/No-code
development platform

Generative AI

Distributed cloud

Multiexperience
development platform

100%

88%

79%

73%

61%

Top game-changing
technologies in the
next three years:

Generative AI

Revolutionizing claims adjudication using generative AI 3

https://emt.gartnerweb.com/ngw/globalassets/en/information-technology/images/infographics/2024-cio-agenda/2024-cio-agenda-infographics/2024-cio-agenda-banking-and-investment-infographic
https://emt.gartnerweb.com/ngw/globalassets/en/information-technology/images/infographics/2024-cio-agenda/2024-cio-agenda-infographics/2024-cio-agenda-banking-and-investment-infographic

Revolutionizing claims adjudication using generative AI 4

Introduction

Global CEOs are making gen AI a top investment priority. In 2023, a survey was conducted by KPMG,
encompassing 2,100 C-suite leaders from 16 companies across nine industries that include energy,
education, financial services, government, healthcare, industrial manufacturing, life sciences, tech,
retail and consumer packaged goods. Each of these companies has more than US$500 million in
annual revenue. The survey results show that 70% of companies are investing heavily in gen AI—to
ensure having a competitive edge in the future. At least 52% expect to see a return on investment (ROI)
in three to five years. In fact, increased profitability was cited by 22% respondents as the number one
benefit of implementing gen AI within an organization.

While global CEOs are willing to go ahead and make investments in gen AI, they also recognize the
need to address risks that come with gen AI. 82% of respondents believe that gen AI has heightened
cybersecurity risks by providing new attack strategies for adversaries. Additionally, 57% cited ethical
challenges as the top concern, followed closely by a lack of regulation and integration complexity.

Source: https://kpmg.com/dk/en/home/insights/2023/10/kpmg-ceo-outlook-2023.html

As we address the concerns raised by global CEOs, it is important to understand what gen AI is and
how we can reduce upfront investments in gen AI.

Gen AI is a type of artificial intelligence technology that uses pretrained large language models
(LLMs) that can produce several types of content, including text, imagery, audio and code or synthetic
data. LLMs use the transformer architecture, a type of neural network, which has two components—
an encoder and a decoder. The encoder takes the input data, extracts meaning and context from the
data and passes it on to the decoder, which then generates the output.

To reduce the upfront investment in gen AI, Cognizant has partnered with Amazon, Microsoft and
Google to leverage their cloud computing platforms, which have inbuilt foundational models. This
eliminates the need to build an LLM from scratch, thereby exponentially reducing the upfront hardware
investments and build time. These platforms provide additional features to develop custom models.
Their usage is on a pay-as-you-go basis, which shifts costs from a CapEx to an OpEx model. In
addition, leveraging open-source AI frameworks and libraries such as LangChain and Hugging Face
Transformers can significantly reduce development and licensing costs.

Perspectives from CEOs on generative AI

70%

Generative AI is their top
investment priority

82%

AI may provide new attack
strategies for adversaries

57%

Ethical challenges—the number
one concern when it comes to
implementing generative AI

https://kpmg.com/dk/en/home/insights/2023/10/kpmg-ceo-outlook-2023.html

Another approach that Cognizant has adopted is the identification of specific areas where proof
of concepts (POC) can be implemented. The success in these limited deployments will test gen AI’s
effectiveness and hence justify the need for future investments. To become more cost-effective, instead
of hiring external talent, Cognizant has invested significantly in upskilling its existing workforce with
primary focus on the in-house data science and automation teams.

To mitigate data privacy and security risks associated with gen AI, Cognizant has adopted a
comprehensive strategy that balances innovation with robust safeguards. The measures we take
include the following:

• Enabling data encryption at rest and transit, and role-based access control (RBAC) features, which
are a part of the cloud platforms.

• Integrating privacy and data protection principles into the design and development of custom
LLMs by anonymizing or pseudonymizing PHI data.

• Conducting regular data privacy impact assessments (DPIAs)—to identify and mitigate
potential risks.

• Establishing a cross-functional AI ethics committee responsible for overseeing gen AI projects,
ensuring they align with the ethical standards, and managing data privacy concerns.

• Developing and maintaining a comprehensive incident response plan for gen AI-related data
breaches. This plan includes clear steps for containment, investigation, communication and
remediation—and will be regularly tested for effectiveness and readiness through tabletop
exercises and simulations.

The challenge:

Rising cost and complexity of claims management

According to the American Medical Association (AMA), the US healthcare industry loses approximately
US$210 billion annually due to inefficient claims processing. A significant portion of these costs stem
from the manual review of complex claims, accounting for 15%–20% of all claims.

Automating these claims using gen AI has the potential to reduce costs by 30%–70%. However, building
a custom gen AI model requires substantial upfront investments in infrastructure, token costs,
training time and expert resources. To justify these costs, it’s essential to measure the potential ROI.
Gartner identifies three primary categories of gen AI investments, each with unique objectives
and evaluation criteria.

Revolutionizing claims adjudication using generative AI 5

Our approach

Our opportunity falls under the category of transformational initiatives (see the diagram below),
and based on this, we have estimated ROI within 9 months to 12 months from go-live for a single
client, and another 12 months to 24 months across all clients for whom we process claims. In total,
we’re looking at a timeframe of two-and-a-half years to three years to deploy gen AI across the
entire claims business.

Source: https://www.gartner.com/en/articles/take-this-view-to-assess-roi-for-generative-ai

Quick wins

Tools such as Microsoft
365, Copilot and Google
Workspace exemplify
the immediate benefits
of gen AI.

Differentiating use cases

Gen AI applications
that offer a unique
competitive advantage
by enhancing
existing processes
with proprietary
enterprise data.

Transformation
initiatives

The ambitious bets on
gen AI that have the
potential to redefine
market dynamics and
business models.

This is where our use
case fits

ROI <1 year

ROI between
1–2 years

ROI >2 years

Generative AI use case categories

High

High
Low

Deployment cost, complexity and risk

Value

We leverage a large language foundational model and customize it with domain-specific
claims data and SOPs—to autoprocess the edit codes in the claims that are currently manually
adjudicated. We follow a structured model as depicted in the diagram below.

Revolutionizing claims adjudication using generative AI 6

https://www.gartner.com/en/articles/take-this-view-to-assess-roi-for-generative-ai

Revolutionizing claims adjudication using generative AI 7

Gen AI solution for claims adjudication

Data collection, preparation
and ingestion
Gather and generate claims
data and SOPs, and preprocess
it to efficiently organize and
structure data, ensuring optimal
performance in location answers
within our application.

POC model evaluation
If the model meets
70%–80% of the expected
performance, then fine-
tune the model.

Customized model creation
Create the POC model,
customized on domain
data, and improve its
performance using prompt
engineering and retrieval
augmented generation.

Fine-tuning the model
Fine-tune the POC model and
deploy it in production as and
when it meets the expected
performance. Thereafter,
further refine the model
through continuous feedback.

1 2 43 5

Service and model selection
Determine which
platform— such as Open AI,
Azure Open AI and Amazon
Bedrock along with the
foundation LLM such as
ChatGPT—to be used for
building the model.

Revolutionizing claims adjudication using generative AI 8

Features OpenAI Amazon Bedrock Azure OpenAI

Integration ease High Medium High

Scalability High Very high High

Pretrained models Extensive Limited Extensive

Custom model
training

Yes Yes Yes

Data security Low High High

Regulatory
compliance

Low Medium High

Prompts and
completions

Stores prompts
and completions
to train, retrain
or improve the
models. Therefore,
your data might
be used to
train other
OpenAI models.

Doesn’t use your prompts and
continuations to train any AWS
models or distribute them to
third parties. Amazon Bedrock
has the concept of a model
deployment account in each
AWS region, where Amazon
Bedrock is available. There is one
such deployment account per
model provider. These accounts
are owned and operated by the
Amazon Bedrock service team.
Model providers don’t have any
access to those accounts.

Stores prompts and
completions data
for a maximum
of 30 days in the
same region, which
is encrypted and
only available
to authorized
employees.
Therefore, your data
cannot be used to
train other
OpenAI models.

Pricing Pay-as-you-go Pay-as-you-go Pay-as-you-go

Our detailed solution

Following is a detailed description of our gen AI solution for claims adjudication.

Service and model selection

We first evaluated the most suitable platform among OpenAI, Azure OpenAI and Amazon Bedrock.
See the table below for an overview of the attribute-wise comparison of these three services.

Service selection

Revolutionizing claims adjudication using generative AI 9

From this evaluation, we concluded that though OpenAI is the pioneer in developing foundational
LLMs, it is not a good proposition with the advent of Amazon Bedrock and Microsoft Azure OpenAI,
for enterprise usage. This is primarily because of the lack of features that provide data security
and regulatory compliance compared to its counterparts. On the contrary, with Amazon Bedrock
and Azure OpenAI, you will have full control over the data you use to customize the model for your
solution. However, Azure OpenAI’s performance on response time and regulatory compliance is better
compared to Amazon Bedrock, and these are two very critical parameters for the problem that we are
trying to solve. Hence, we selected Azure OpenAI to build our model.

Azure OpenAI service provides access to OpenAI’s powerful language models such as GPT-4 and GPT-
3.5-Turbo. Users can access the service through a web-based interface in the Azure OpenAI studio.
We evaluated ChatGPT-3.5 Turbo 16K and ChatGPT-4 32K on attributes that are most critical to this
opportunity. The table given below presents the details of the comparison.

The above evaluation helped us zero in on ChatGPT-3.5 Turbo 16K as the foundational LLM
for us to use and build the solution. Before we can generate text or inference, we deploy this
foundational model in Azure OpenAI Studio. Once this deployment is completed, we proceed to
build our customized model.

Attributes GPT-3.5 Turbo16K GPT-4 32K Recommended

Speed of response Speed of response Slow at giving answers GPT-3.5 Turbo16K

Cost Less expensive More expensive GPT-3.5 Turbo16K

Context length 16,384 tokens 32,768 tokens GPT-3.5 Turbo16K,
because GPT-4 32K will
have a limit of 24,000
words or 48 pages
which is not needed

Memory and
computational power

Operates effectively
with less computational
power and memory

Requires more
computational power
and memory

GPT-3.5 Turbo16K

Visual input Does not have this
capability

Has this capability Not relevant because
the claims data is
available in the
EDI gateway

Model selection

Revolutionizing claims adjudication using generative AI 10

Data collection, preparation and ingestion

The core of a successful LLM lies in a well-curated and diverse dataset. A high-quality dataset is
essential for producing coherent and contextually relevant output. Some of the key aspects of these
datasets are type and size of data, data sources and data quality.

For our model, we use the following data:

• Claims: Claims: Historical (processed) and new-day claims data for only those claims with the five
shortlisted edit codes for the POC. We use an estimated number of 10,000 claims and this data is
obtained from the FACETS team.

• SOPs: We get the five shortlisted edit codes from the client knowledge management
system/repository.

• Data tables: The FACETS team provides this information. It is needed to establish the
relationship between those tables (provider, member, pricing, etc.) and process the claims
with the shortlisted edit codes.

Once we have the data, it is important to preprocess it to create a pretraining corpus for the LLM to
remove noise, redundancy and irrelevance. This is because the data quality can significantly impact
the capacity and performance of the model. Data preprocessing has the following four major steps:

Data cleaning and ingestion:

It involves identifying and rectifying inaccuracies, inconsistencies and irrelevant elements within raw
data. Common cleaning procedures for claims data include removing duplicate entries, handling
missing or erroneous values and addressing formatting irregularities. Azure OpenAI does not support
.xlsx and .csv formats, so we convert the claims data, which can be in any one of these formats, into
.json format. Text-specific cleaning tasks, applicable for SOPs, involve removing special characters,
punctuation, stop words and screenshots. In addition, instead of having five SOPs, we can have one
business requirements document (BRD) for the five edit codes. This will result in a faster build time with
reduced cost for the gen AI engine.

After the data is preprocessed and made ready for usage, we ingest the data into Azure Blob Storage,
which is a highly scalable and reliable cloud storage solution and is ideal for storing large amounts of
unstructured data. We then connect it to Azure OpenAI for ingestion via HTTP or HTTPS. We add our
data in Azure Blob storage account through the Azure OpenAI Studio, in the Chat Playground.

Tokenization:

LLMs process text data in units called tokens, which can be words, parts of words, or even characters.
Tokenization is the process of breaking down text into these tokens. This method is particularly suitable
for SOPs, which often contain many specialized terms. There are three tokenization methods—word
level, character level and subword level. We use subword-level tokenization for the POC that balances
the need to represent both common and rare words effectively. This method is particularly suitable for
SOPs, which often contain many specialized terms.

Chunking:

It involves breaking down the data into digestible portions and sending only the most relevant chunks
to the model. This way, we get the precise insights we want. Chunk size determines what embedding
models should be used. For our POC, we use large chunk size and top-k retrieved chunks along with
a range of chunk sizes (we start by exploring with 512 or 1024 tokens), to limit how much data we can
input into our LLM. Out of the various chunking methods, we use variable size chunking because
we need intact text or passages and larger chunks. The variable chunking does this by preserving
the sentence structure, thereby producing better results. It will partition the SOPs based on content
characteristics such as end-of-sentence punctuation marks, end-of-line markers, headers, etc.

To tokenize and chunk input data in Azure OpenAI, we use LangChain, which simplifies the process
of loading documents, estimating token counts and splitting text into manageable chunks. For PDF
SOPs, we use TikToken to estimate token counts. TikToken uses byte pair encoding, a technique
that efficiently represents common words as single tokens and breaks down rare words into smaller
subword tokens. This approach aligns with subword-level tokenization and ensures optimal processing
by the LLM.

Embeddings:

Once the text is tokenized, it needs to be converted into numerical representations called embeddings.
These embeddings allow the model to understand the semantic meaning of words and their
relationships. Azure OpenAI’s text-embedding-ada-002 model is used to generate these embeddings
for our project.

Customized model creation:

Once the foundational ChatGPT-3.5 Turbo 16K model is deployed in Azure OpenAI, it must be
customized as it does not contain the healthcare specific data needed to adjudicate claims.
Customization can be done using:

• Prompt engineering

• Retrieval augmented generation (RAG)

Revolutionizing claims adjudication using generative AI 11

Revolutionizing claims adjudication using generative AI 12

Prompt engineering:

It is the art of crafting instructions to guide LLMs toward specific responses. We’ll use chain-of-thought
prompting to guide ChatGPT-3.5 Turbo 16K toward the desired output. Since we use custom data,
few-shot prompting won’t be applicable.

To minimize the number of iterations to get the desired or nearly desired output, we use the
following techniques:

• System message: It starts with a system message at the beginning of the prompt. It primes the
model by offering context, instructions or relevant information. For instance, a system message
could define the assistant’s personality and specify response formats.

• CoT prompting: This technique involves breaking down a task into smaller and step-by-step
instructions. This approach can improve the accuracy and clarity of the model’s responses.
We implement this by adding a specific instruction to the user message field on Azure OpenAI
Studio Chat Playground.

• Structured output: It specifies the desired output format in the prompt, in the user message field on
Azure OpenAI Studio Chat Playground. It guides the model to produce responses that match your
requirements, making parsing easier.

• Temperature, top_p and other parameters: The parameters such as temperature and top_p control
the randomness of the model’s output. Temperature determines how randomly the model predicts
words, while top_p controls the length of the word list. This is why it is not advisable to play or
change the values of both parameters simultaneously. For our solution, we adjust the temperature
to 0.1, to prioritize precise responses. Other parameters such as strictness and retrieved documents
can also be fine-tuned—to control the quality and relevance of the output. By understanding and
effectively using these parameters, we can optimize the model’s performance and cost-efficiency.

The above system message and user message are inputs for the corresponding fields in the Azure
OpenAI Studio Chat Playground. However, this will be the backend entity and the claims processor will
have to input the 118-token prompt below on the UI that will be created to ensure seamless interaction
between the claim processor and the LLM.

“You are a claim processor. Your task is to process claims by resolving the edits and warning messages
on a claim and provide recommendation on whether to pay, deny or pend the claim. Analyze the edit/s
on this claim by referring to the relevant SOPs, validate the rules and provide your recommendation.
Explain the step-by-step approach for your recommendation. In your recommendation, provide the
reason to pay, deny or pend the claim.” If you are unable to process an edit or edits on a claim mention
that you don’t know the answer , this is the standard prompt that applies to all edit codes in claims and
serves as the input to the LLM to generate the output.

Revolutionizing claims adjudication using generative AI 13

To create a user-friendly solution, a React.js-based application is developed. The UI includes three
main tabs:

• Claim information: Displays detailed claim information, including provider, member, billing
elements, authorization details and any edits or warnings.

• User query: Allows users to input prompts or questions related to the claim.

• Output: Presents the LLM-generated response or recommendation. A select group of SMEs will
have access to a review pane—to validate the accuracy of the LLM’s output, contributing to the
model’s improvement through RLHF. The findings of this review are presented in a tabular format
and look something like this:

The review process involves auto populating claim ID, edit codes and reviewer information. SMEs mark
a claim as accurately processed or not. If accurate, the remarks section is disabled; otherwise, SMEs
must provide details about the error.

The model performance pane provides insights into the model accuracy and the list of edit code-wise
steps where the LLM has failed. With prompt engineering for the POC, we look at a minimum model
accuracy in the range of 50%–60%, with a prompt iteration limit of five to seven.

Claim ID Edit code/s warning
message/s

Reviewed by Accurately processed
(Y/N)

Remarks if N

RAG

It is an LLM learning technique that merges the retrieval mechanisms and generative capabilities to
enhance the performance of large language models. It enables LLMs to give relevant and domain-
specific responses versus generalized responses. In RAG architecture, there is no extra training. The
LLM is pretrained using public data, but it generates responses that are augmented by information
from the retriever. So, it uses the claims data and provides it as part of the prompt. Then it is used to
query the LLM model and retrieve relevant data, and applied as an augmented context for the LLM.
It is highly reliable when dealing with sensitive data such as PHI in healthcare. RAG can assist claims
processors in decision making by providing up-to-date information and processing guidelines. The
below diagram provides a view on the three elements of RAG working.

Understanding the basics of how RAG works

1. Retriever

Responsible for the initial
step of retrieving relevant
information from data sources.
It uses retrieval techniques
such as keyword-based
search, document retrieval or
structured database queries to
fetch pertinent data.

Primary goal is to compile a
set of contextually relevant
information that can be used
to enrich the user’s query.

2. Ranker

Refines the retrieved information
by assessing its relevance
or importance. It assigns scores
or ranks to the retrieved data
points, helping prioritize the
most relevant ones.

Ensures the most pertinent
information is presented
to the generator for
content generation.

3. Generator

Takes the retrieved and
ranked information, along
with the user’s original query
and generates the final
response and output.

Ensures that the response
aligns with the user’s query
and incorporates the factual
knowledge retrieved from
various data sources.

Unlike traditional databases for RAG implementation, we use a vector database to store vectors
(fixed-length lists of numbers) along with other data items. This is primarily because vector databases
outperform traditional databases as they do not require a predefined schema, can handle structured
and unstructured data, and provide similarity search. For our use case, we use Azure AI Search as
the vector database. The below diagram is an illustration of how the four components in the RAG
pattern—app UX (which provides the user experience), app server or orchestrator (which is the
integration code that coordinates the handoffs between information retrieval and the LLM), Azure AI
Search (which is the information retrieval system) and the LLM (which in this case is ChatGPT 3.5 Turbo
16K)—work together to generate a response.

App UX
App server,
orchestrator

Azure AI search

Query knowledge

Prompt +
knowledge response

Azure OpenAI (GPT/ChatGPT)

Data sources
(files, database, etc.)

RAG architecture in Azure AI search

Revolutionizing claims adjudication using generative AI 14

In Azure AI Search, all searchable content is stored in a search index that’s designed for fast queries
with millisecond response time as its internal data structures exist to support that objective. When we
set up the data for our RAG solution, we use the features that create and load an index in Azure AI
Search. An index includes fields that duplicate or represent our source content. An example of an index
field in our case will be the edit codes. Once our data is in a search index, we use the query capabilities
of Azure AI Search to retrieve content. The query stack in Azure AI Search has two main layers of
execution—retrieval and ranking.

• Retrieval: Often called L1, the goal of this step is to quickly find all the documents from the index
that satisfy the search criteria—possibly across millions or billions of documents. These are scored
to pick the top few (typically in the order of 50) to return to the user or to feed to the next layer.
Azure AI Search supports three different L1 modes—keyword, vector and hybrid.

• Keyword: Uses traditional full-text search methods, where the content is broken into terms
through language-specific text analysis. The inverted indexes are created for fast retrieval and
the BM25 probabilistic model is used for scoring.

• Vector: Enables you to find documents that are similar to a given query input which is based
on the vector embeddings of the content.

• Hybrid: Performs both keyword and vector search and applies a fusion step to select the best
results from each technique. Azure AI Search currently uses reciprocal rank fusion (RRF) to
produce a single result set. Hybrid search brings out the best of keyword and vector search.

• Ranking: Also called L2, it takes a subset of the top L1 results and computes higher quality
relevance scores to reorder the result set. It is critical for RAG applications to make sure the best
results are in the top positions. L2 can improve L1’s ranking because it applies more computational
power to each result using semantic ranking. In Azure AI Search, semantic ranker is a feature that
measurably improves search relevance by using Microsoft’s language understanding models to
rerank search results. It is a collection of query-side capabilities that improve the quality of the
initial BM25-ranked search result for the input query. This feature provides the user with the top
search results by reranking the existing result set, consisting of the top 50 results as scored by the
BM25 ranking algorithm.

Revolutionizing claims adjudication using generative AI 15

https://learn.microsoft.com/en-us/azure/search/vector-search-ranking#reciprocal-rank-fusion-rrf-for-hybrid-queries
https://learn.microsoft.com/en-us/azure/search/index-similarity-and-scoring

Revolutionizing claims adjudication using generative AI 16

The semantic ranker can rank the top 50 results from L1. While hybrid search yields the best results,
when it is combined with semantic ranking, it further enriches the search results. This is because
semantic ranking puts the top three to five results at the top. Thus hybrid + semantic ranking finds the
best content for the LLM at each result set size as indicated in the graph below:

In our case, we use hybrid search and semantic ranker. With RAG implementation for the POC, we aim
for a minimum model accuracy in the range of 70%-80%.

POC model evaluation

To evaluate the performance of an LLM, we use accuracy as the metric. This will be done through
a manual evaluation approach or RLHF, where the SME manually reviews the model’s generated
outputs. The evaluation could yield the following two possibilities:

• Using prompt engineering, if we achieve 95% model accuracy, then we deploy it in production.
Otherwise, we target at least 50%–60% with five to seven iterations of the prompt.

• Then we implement RAG and if we are able achieve 95% model accuracy, we deploy the model.
However, if we don’t achieve the expected accuracy, then we will target at least 70%-80% and
proceed to fine-tuning the model.

Hybrid retrieval with semantic ranking outperforms vector-only search

35

40

45

50

55

60

65

70

75

80

12 34 5

Pe
rc

en
t o

f Q
ue

rie
s

Number of Results

Hybrid + Semantic Ranker Hybrid

Vector Keyword

Fine-tuning the model

Fine-tuning is a process to improve a pretrained model’s performance on specific tasks such as
processing claims. It involves training the model on a smaller and specific data set. While it can
significantly enhance the model’s accuracy, it’s a costly and time-consuming process. The cost
of training a ChatGPT-3.5 Turbo 16K model depends on various factors, including the size of the
training dataset and the number of training epochs. A critical point to go ahead with fine-tuning
the model is to have a baseline performance which we have from the POC model. This will help
determine if fine-tuning has improved the model’s performance. This is specifically the reason
why we follow the below road map to build a customized model, taking into consideration the
complexity and time/cost/organizational maturity.

C
om

pl
ex

ity

Time/cost/organizational maturity

Prompt
engineering

Retrieval
augmented
generation

Fine-tuning

Fine-tuning the model

Revolutionizing claims adjudication using generative AI 17

In Azure OpenAI, we have the following two steps for fine-tuning.

• Upload your dataset: We recommend at least hundred excellent quality samples to start
with our use case and then keep on increasing the size of the dataset till we achieve the expected
model accuracy.

• Create custom model: Azure OpenAI service employs the supervised fine-tuning method called
LoRA, or low rank approximation, to fine-tune models in a way that reduces their complexity
without significantly affecting their performance. This method allows us to fine-tune the model
efficiently by adjusting only a small subset of its parameters, rather than the entire model. This
significantly reduces training time and cost. We utilize Azure OpenAI Studio to implement LoRA
and fine-tune our model. Once the fine-tuning process is complete, we deploy the customized
model and evaluate its performance using RLHF. If the model doesn’t achieve the desired
accuracy of 95%, we iteratively add more training data to refine its capabilities and help
reach the target performance.

Now, to deploy this model, we have two options to choose from. The first one is to have the model
integrated with the claims adjudication system. The second one is to deploy it outside this system but
within the client environment.

The first approach will result in an increase in auto adjudication percentage. However, the health plans
will have to factor in additional budgets and capital expenses to modernize their existing adjudication
platforms. Also, it presents several technical and operational challenges, which generally revolve
around security, performance, integration complexity and compliance.

So, we adopt the second approach, where the gen AI model is hosted outside the adjudication engine
but within the client’s environment. For the second approach, we deploy an RPA bot outside the claims
adjudication platform—to segregate the claims with the shortlisted five edit codes for the POC.

One of the key challenges that we encounter once the model is deployed to production is SOP
updates. For this, we first determine the frequency as well as the impact of the updates and then
obtain a buy-in from the client to inform us about the details at least two weeks in advance if it is
a minor update and four weeks if it is a major one. This will provide us with ample time to make
and test the necessary changes to the LLM, so that it can be deployed to production as and when
the SOP update is effective. Since we are using Azure AI Search, for minor updates, which have an
impact to the model output, the LLM can query the search index to find the most relevant documents
dynamically at runtime. The retrieved documents are then fed as context to the model to generate
responses. This approach requires no retraining of the model as the SOP updates reflect immediately
by updating the search index. For major updates, we will fine-tune the model, so that it provides the
most accurate and deeply integrated response patterns for our LLM.

Another point to consider is that Azure OpenAI regularly releases new model versions—to improve
performance and add features. To ensure our solution stays up to date, we configure
automatic updates using model versions when older versions are retired. However, it’s important
to be aware of potential changes in model behavior after upgrades. To minimize disruptions,
we review documentation, test our application with the new version and update our code and
configuration as needed.

Revolutionizing claims adjudication using generative AI 18

Saptarshi Dhar
General Manager, PEx
Healthcare IOA

Conclusion

This paper provides a detailed explanation of how to build a gen AI model to adjudicate claims, by
leveraging Azure OpenAI service. Through comprehensive data collection, preprocessing, prompt
engineering, RAG and fine-tuning, the model systematically assesses and recommends valid reasons
to either pay, deny or pend the claim. Some of the key priorities for the future is to integrate the solution
within the core claims adjudication system, making it platform-agnostic and exploring the possibility of
applying the model with the necessary modifications to other areas in claims such as adjustments and
payments. Having the model engrained within the adjudication engine will result in an increase in auto
adjudication rate, thereby driving increased productivity gains. Reduced cost, enhanced scalability
and interoperability are some of the outcomes that we achieve with a platform-agnostic solution.
Lastly, by taking cues from this model, we can expand our gen AI footprint in the claims business—by
building solutions in claims adjustments and payments.

About the author

Saptarshi Dhar is a transformation solution leader at Cognizant’s Healthcare IOA business unit and
is responsible for providing transformation solution and productivity commitment for all new deals.
Saptarshi joined Cognizant in 2023 from Amazon, where he spent more than two years developing
automated products—for ensuring a seamless customer shopping experience on the company
website. Prior to Amazon, Saptarshi worked in the healthcare domain for several companies, including
Sagility and Tata Consultancy Services. Saptarshi has over more than ten years of expertise in
automating healthcare payer processes and developing AI/ML models.

Revolutionizing claims adjudication using generative AI 19

© Copyright 2025, Cognizant. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the express written permission of Cognizant. The information contained herein is subject to change without notice.
All other trademarks mentioned here in are the property of their respective owners.

Cognizant helps engineer modern businesses by helping to modernize technology, reimagine processes and transform experiences so they can stay ahead in our
fast-changing world. To see how Cognizant is improving everyday life, visit them at www.cognizant.com or across their socials @cognizant.

World Headquarters
300 Frank W. Burr Blvd.
Suite 36, 6th Floor
Teaneck, NJ 07666 USA
Phone: +1 201 801 0233
Fax: +1 201 801 0243
Toll Free: +1 888 937 3277

European Headquarters
280 Bishopsgate
London
EC2M 4RB
England
Tel: +44 (01) 020 7297 7600

India Operations Headquarters
5/535, Okkiam Thoraipakkam,
Old Mahabalipuram Road,
Chennai 600 096
Tel: 1-800-208-6999
Fax: +91 (01) 44 4209 6060

APAC Headquarters
1 Fusionopolis Link, Level 5
NEXUS@One-North, North Tower
Singapore 138542
Tel: +65 6812 4000

WF3158451

Reference
2024 Gartner report on top technology investments and objectives for healthcare payers
(https://emt.gartnerweb.com/ngw/globalassets/en/information-technology/images/infographics/2024-cio-
agenda/2024-cio-agenda-infographics/2024-cio-agenda-banking-and-investment-infographic)

2023 KPMG survey (https://kpmg.com/dk/en/home/insights/2023/10/kpmg-ceo-outlook-2023.html)

Three principal generative AI use case categories from Gartner (https://www.gartner.com/en/articles/take-
this-view-to-assess-roi-for-generative-ai)

Data preprocessing (https://www.turing.com/resources/understanding-data-processing-techniques-for-llms)

Detailed solution approach with Azure OpenAI service
(https://learn.microsoft.com/en-us/azure/ai-services/openai/)

Prompt engineering
(https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/prompt-engineering?tabs=chat)

RAG in Azure OpenAI
(https://learn.microsoft.com/en-us/azure/search/retrieval-augmented-generation-overview)

Vector database—Azure AI search (https://medium.com/@mjtpena/choosing-the-right-azure-vector-
database-d62a64f30e68)

Hybrid retrieval with semantic ranking versus vector-only search (https://techcommunity.microsoft.com/t5/
ai-azure-ai-services-blog/azure-ai-search-outperforming-vector-search-with-hybrid/ba-p/3929167)

Fine-tuning (https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-
tuning?tabs=turbo%2Cpython-new&pivots=programming-language-studio)

Model versions (https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/model-versions)

https://emt.gartnerweb.com/ngw/globalassets/en/information-technology/images/infographics/2024-cio-agenda/2024-cio-agenda-infographics/2024-cio-agenda-banking-and-investment-infographic
https://emt.gartnerweb.com/ngw/globalassets/en/information-technology/images/infographics/2024-cio-agenda/2024-cio-agenda-infographics/2024-cio-agenda-banking-and-investment-infographic
https://kpmg.com/dk/en/home/insights/2023/10/kpmg-ceo-outlook-2023.html
https://www.gartner.com/en/articles/take-this-view-to-assess-roi-for-generative-ai
https://www.gartner.com/en/articles/take-this-view-to-assess-roi-for-generative-ai
https://www.turing.com/resources/understanding-data-processing-techniques-for-llms
https://learn.microsoft.com/en-us/azure/ai-services/openai/
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/prompt-engineering?tabs=chat
https://learn.microsoft.com/en-us/azure/search/retrieval-augmented-generation-overview
https://medium.com/@mjtpena/choosing-the-right-azure-vector-database-d62a64f30e68
https://medium.com/@mjtpena/choosing-the-right-azure-vector-database-d62a64f30e68
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/azure-ai-search-outperforming-vector-search-with-hybrid/ba-p/3929167
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/azure-ai-search-outperforming-vector-search-with-hybrid/ba-p/3929167
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=turbo%2Cpython-new&pivots=programming-language-studio
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=turbo%2Cpython-new&pivots=programming-language-studio
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/model-versions

