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Executive summary

The US healthcare industry faces increasing inflation and labor costs, prompting CIOs, IT leaders 
and business professionals to seek cost reductions and efficiency improvements. This environment 
has accelerated innovation, with generative AI (gen AI) emerging as a significant disruptor. According 
to the 2024 Gartner report, AI/ML is expected to be a top priority by 2026, with 79% of respondents 
identifying gen AI as a major game changer in the next three years.

Source: https://emt.gartnerweb.com/ngw/globalassets/en/information-technology/images/infographics/2024-cio-agenda/2024-

cio-agenda-infographics/2024-cio-agenda-banking-and-investment-infographic

However, the adoption of gen AI introduces risks, including heightened cybersecurity threats and 
ethical challenges. Despite these concerns, our comprehensive strategy balances innovation with 
robust safeguards. This whitepaper presents a detailed solution for implementing gen AI in claims 
adjudication, addressing the associated risks and mitigation strategies.

Technologies most likely to be implemented by 2026

AI/ML

Low-code/No-code 
development platform

Generative AI

Distributed cloud

Multiexperience 
development platform

100%

88%

79%

73%

61%

Top game-changing 
technologies in the 
next three years:

Generative AI
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Introduction

Global CEOs are making gen AI a top investment priority. In 2023, a survey was conducted by KPMG, 
encompassing 2,100 C-suite leaders from 16 companies across nine industries that include energy, 
education, financial services, government, healthcare, industrial manufacturing, life sciences, tech, 
retail and consumer packaged goods. Each of these companies has more than US$500 million in 
annual revenue. The survey results show that 70% of companies are investing heavily in gen AI—to 
ensure having a competitive edge in the future. At least 52% expect to see a return on investment (ROI) 
in three to five years. In fact, increased profitability was cited by 22% respondents as the number one 
benefit of implementing gen AI within an organization. 

While global CEOs are willing to go ahead and make investments in gen AI, they also recognize the 
need to address risks that come with gen AI. 82% of respondents believe that gen AI has heightened 
cybersecurity risks by providing new attack strategies for adversaries. Additionally, 57% cited ethical 
challenges as the top concern, followed closely by a lack of regulation and integration complexity.

Source: https://kpmg.com/dk/en/home/insights/2023/10/kpmg-ceo-outlook-2023.html

As we address the concerns raised by global CEOs, it is important to understand what gen AI is and 
how we can reduce upfront investments in gen AI.  

Gen AI is a type of artificial intelligence technology that uses pretrained large language models 
(LLMs) that can produce several types of content, including text, imagery, audio and code or synthetic 
data. LLMs use the transformer architecture, a type of neural network, which has two components—
an encoder and a decoder. The encoder takes the input data, extracts meaning and context from the 
data and passes it on to the decoder, which then generates the output.

To reduce the upfront investment in gen AI, Cognizant has partnered with Amazon, Microsoft and 
Google to leverage their cloud computing platforms, which have inbuilt foundational models. This 
eliminates the need to build an LLM from scratch, thereby exponentially reducing the upfront hardware 
investments and build time. These platforms provide additional features to develop custom models. 
Their usage is on a pay-as-you-go basis, which shifts costs from a CapEx to an OpEx model. In 
addition, leveraging open-source AI frameworks and libraries such as LangChain and Hugging Face 
Transformers can significantly reduce development and licensing costs.

Perspectives from CEOs on generative AI

70%

Generative AI is their top 
investment priority

82%

AI may provide new attack 
strategies for adversaries

57%

Ethical challenges—the number 
one concern when it comes to 
implementing generative AI

https://kpmg.com/dk/en/home/insights/2023/10/kpmg-ceo-outlook-2023.html


Another approach that Cognizant has adopted is the identification of specific areas where proof 
of concepts (POC) can be implemented. The success in these limited deployments will test gen AI’s 
effectiveness and hence justify the need for future investments. To become more cost-effective, instead 
of hiring external talent, Cognizant has invested significantly in upskilling its existing workforce with 
primary focus on the in-house data science and automation teams.

To mitigate data privacy and security risks associated with gen AI, Cognizant has adopted a 
comprehensive strategy that balances innovation with robust safeguards. The measures we take 
include the following:

• Enabling data encryption at rest and transit, and role-based access control (RBAC) features, which 
are a part of the cloud platforms.

• Integrating privacy and data protection principles into the design and development of custom 
LLMs by anonymizing or pseudonymizing PHI data.

• Conducting regular data privacy impact assessments (DPIAs)—to identify and mitigate  
potential risks.

• Establishing a cross-functional AI ethics committee responsible for overseeing gen AI projects, 
ensuring they align with the ethical standards, and managing data privacy concerns.

• Developing and maintaining a comprehensive incident response plan for gen AI-related data 
breaches. This plan includes clear steps for containment, investigation, communication and 
remediation—and will be regularly tested for effectiveness and readiness through tabletop 
exercises and simulations.

The challenge:

Rising cost and complexity of claims management

According to the American Medical Association (AMA), the US healthcare industry loses approximately 
US$210 billion annually due to inefficient claims processing. A significant portion of these costs stem 
from the manual review of complex claims, accounting for 15%–20% of all claims. 

Automating these claims using gen AI has the potential to reduce costs by 30%–70%. However, building 
a custom gen AI model requires substantial upfront investments in infrastructure, token costs,  
training time and expert resources. To justify these costs, it’s essential to measure the potential ROI. 
Gartner identifies three primary categories of gen AI investments, each with unique objectives  
and evaluation criteria.
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Our approach

Our opportunity falls under the category of transformational initiatives (see the diagram below), 
and based on this, we have estimated ROI within 9 months to 12 months from go-live for a single 
client, and another 12 months to 24 months across all clients for whom we process claims. In total, 
we’re looking at a timeframe of two-and-a-half years to three years to deploy gen AI across the 
entire claims business.

Source: https://www.gartner.com/en/articles/take-this-view-to-assess-roi-for-generative-ai

Quick wins

Tools such as Microsoft 
365, Copilot and Google 
Workspace exemplify  
the immediate benefits 
of gen AI.

Differentiating use cases

Gen AI applications 
that offer a unique 
competitive advantage 
by enhancing  
existing processes  
with proprietary 
enterprise data.

Transformation 
initiatives

The ambitious bets on 
gen AI that have the 
potential to redefine 
market dynamics and 
business models.

This is where our use 
case fits

ROI <1 year

ROI between 
1–2 years

ROI >2 years

Generative AI use case categories

High

High
Low

Deployment cost, complexity and risk

Value

We leverage a large language foundational model and customize it with domain-specific 
claims data and SOPs—to autoprocess the edit codes in the claims that are currently manually 
adjudicated. We follow a structured model as depicted in the diagram below.
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Gen AI solution for claims adjudication

Data collection, preparation  
and ingestion
Gather and generate claims 
data and SOPs, and preprocess 
it to efficiently organize and 
structure data, ensuring optimal 
performance in location answers 
within our application.

POC model evaluation
If the model meets 
70%–80% of the expected 
performance, then fine-
tune the model.

Customized model creation
Create the POC model, 
customized on domain  
data, and improve its 
performance using prompt 
engineering and retrieval 
augmented generation.

Fine-tuning the model
Fine-tune the POC model and 
deploy it in production as and 
when it meets the expected 
performance. Thereafter, 
further refine the model 
through continuous feedback.

1 2 43 5

Service and model selection
Determine which  
platform— such as Open AI, 
Azure Open AI and Amazon 
Bedrock along with the 
foundation LLM such as 
ChatGPT—to be used for 
building the model.
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Features OpenAI Amazon Bedrock Azure OpenAI

Integration ease High Medium High

Scalability High Very high High

Pretrained models Extensive Limited Extensive

Custom model 
training

Yes Yes Yes

Data security Low High High

Regulatory 
compliance

Low Medium High

Prompts and 
completions

Stores prompts 
and completions 
to train, retrain 
or improve the 
models. Therefore,  
your data might 
be used to  
train other  
OpenAI models.

Doesn’t use your prompts and 
continuations to train any AWS 
models or distribute them to 
third parties. Amazon Bedrock 
has the concept of a model 
deployment account in each 
AWS region, where Amazon 
Bedrock is available. There is one 
such deployment account per 
model provider. These accounts 
are owned and operated by the 
Amazon Bedrock service team. 
Model providers don’t have any 
access to those accounts.

Stores prompts and 
completions data 
for a maximum 
of 30 days in the 
same region, which 
is encrypted and 
only available 
to authorized 
employees. 
Therefore, your data 
cannot be used to 
train other  
OpenAI models.

Pricing Pay-as-you-go Pay-as-you-go Pay-as-you-go

Our detailed solution

Following is a detailed description of our gen AI solution for claims adjudication. 

Service and model selection 

We first evaluated the most suitable platform among OpenAI, Azure OpenAI and Amazon Bedrock. 
See the table below for an overview of the attribute-wise comparison of these three services.

Service selection
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From this evaluation, we concluded that though OpenAI is the pioneer in developing foundational 
LLMs, it is not a good proposition with the advent of Amazon Bedrock and Microsoft Azure OpenAI, 
for enterprise usage. This is primarily because of the lack of features that provide data security 
and regulatory compliance compared to its counterparts. On the contrary, with Amazon Bedrock 
and Azure OpenAI, you will have full control over the data you use to customize the model for your 
solution. However, Azure OpenAI’s performance on response time and regulatory compliance is better 
compared to Amazon Bedrock, and these are two very critical parameters for the problem that we are 
trying to solve. Hence, we selected Azure OpenAI to build our model.

Azure OpenAI service provides access to OpenAI’s powerful language models such as GPT-4 and GPT-
3.5-Turbo. Users can access the service through a web-based interface in the Azure OpenAI studio. 
We evaluated ChatGPT-3.5 Turbo 16K and ChatGPT-4 32K on attributes that are most critical to this 
opportunity. The table given below presents the details of the comparison.

The above evaluation helped us zero in on ChatGPT-3.5 Turbo 16K as the foundational LLM 
for us to use and build the solution. Before we can generate text or inference, we deploy this 
foundational model in Azure OpenAI Studio. Once this deployment is completed, we proceed to 
build our customized model.

Attributes GPT-3.5 Turbo16K GPT-4 32K Recommended

Speed of response Speed of response Slow at giving answers GPT-3.5 Turbo16K

Cost Less expensive More expensive GPT-3.5 Turbo16K

Context length 16,384 tokens 32,768 tokens GPT-3.5 Turbo16K, 
because GPT-4 32K will 
have a limit of 24,000 
words or 48 pages 
which is not needed

Memory and 
computational power

Operates effectively 
with less computational 
power and memory

Requires more 
computational power 
and memory

GPT-3.5 Turbo16K

Visual input Does not have this 
capability

Has this capability Not relevant because 
the claims data is 
available in the  
EDI gateway

Model selection
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Data collection, preparation and ingestion

The core of a successful LLM lies in a well-curated and diverse dataset. A high-quality dataset is 
essential for producing coherent and contextually relevant output. Some of the key aspects of these 
datasets are type and size of data, data sources and data quality.

For our model, we use the following data:

• Claims: Claims: Historical (processed) and new-day claims data for only those claims with the five 
shortlisted edit codes for the POC. We use an estimated number of 10,000 claims and this data is 
obtained from the FACETS team. 

• SOPs: We get the five shortlisted edit codes from the client knowledge management  
system/repository.

• Data tables: The FACETS team provides this information. It is needed to establish the  
relationship between those tables (provider, member, pricing, etc.) and process the claims  
with the shortlisted edit codes.

Once we have the data, it is important to preprocess it to create a pretraining corpus for the LLM to 
remove noise, redundancy and irrelevance. This is because the data quality can significantly impact 
the capacity and performance of the model. Data preprocessing has the following four major steps:

Data cleaning and ingestion:

It involves identifying and rectifying inaccuracies, inconsistencies and irrelevant elements within raw 
data. Common cleaning procedures for claims data include removing duplicate entries, handling 
missing or erroneous values and addressing formatting irregularities. Azure OpenAI does not support 
.xlsx and .csv formats, so we convert the claims data, which can be in any one of these formats, into 
.json format. Text-specific cleaning tasks, applicable for SOPs, involve removing special characters, 
punctuation, stop words and screenshots. In addition, instead of having five SOPs, we can have one 
business requirements document (BRD) for the five edit codes. This will result in a faster build time with 
reduced cost for the gen AI engine.

After the data is preprocessed and made ready for usage, we ingest the data into Azure Blob Storage, 
which is a highly scalable and reliable cloud storage solution and is ideal for storing large amounts of 
unstructured data. We then connect it to Azure OpenAI for ingestion via HTTP or HTTPS. We add our 
data in Azure Blob storage account through the Azure OpenAI Studio, in the Chat  Playground.

Tokenization:

LLMs process text data in units called tokens, which can be words, parts of words, or even characters. 
Tokenization is the process of breaking down text into these tokens. This method is particularly suitable 
for SOPs, which often contain many specialized terms. There are three tokenization methods—word 
level, character level and subword level. We use subword-level tokenization for the POC that balances 
the need to represent both common and rare words effectively. This method is particularly suitable for 
SOPs, which often contain many specialized terms.



Chunking:

It involves breaking down the data into digestible portions and sending only the most relevant chunks 
to the model. This way, we get the precise insights we want. Chunk size determines what embedding 
models should be used. For our POC, we use large chunk size and top-k retrieved chunks along with 
a range of chunk sizes (we start by exploring with 512 or 1024 tokens), to limit how much data we can 
input into our LLM. Out of the various chunking methods, we use variable size chunking because 
we need intact text or passages and larger chunks. The variable chunking does this by preserving 
the sentence structure, thereby producing better results. It will partition the SOPs based on content 
characteristics such as end-of-sentence punctuation marks, end-of-line markers, headers, etc. 

To tokenize and chunk input data in Azure OpenAI, we use LangChain, which simplifies the process 
of loading documents, estimating token counts and splitting text into manageable chunks. For PDF 
SOPs, we use TikToken to estimate token counts. TikToken uses byte pair encoding, a technique 
that efficiently represents common words as single tokens and breaks down rare words into smaller 
subword tokens. This approach aligns with subword-level tokenization and ensures optimal processing 
by the LLM.

Embeddings:

Once the text is tokenized, it needs to be converted into numerical representations called embeddings. 
These embeddings allow the model to understand the semantic meaning of words and their 
relationships. Azure OpenAI’s text-embedding-ada-002 model is used to generate these embeddings 
for our project.

Customized model creation:

Once the foundational ChatGPT-3.5 Turbo 16K model is deployed in Azure OpenAI, it must be 
customized as it does not contain the healthcare specific data needed to adjudicate claims. 
Customization can be done using:

• Prompt engineering

• Retrieval augmented generation (RAG)

Revolutionizing claims adjudication using generative AI 11
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Prompt engineering:

It is the art of crafting instructions to guide LLMs toward specific responses. We’ll use chain-of-thought 
prompting to guide ChatGPT-3.5 Turbo 16K toward the desired output. Since we use custom data,  
few-shot prompting won’t be applicable. 

To minimize the number of iterations to get the desired or nearly desired output, we use the  
following techniques:

• System message: It starts with a system message at the beginning of the prompt. It primes the 
model by offering context, instructions or relevant information. For instance, a system message 
could define the assistant’s personality and specify response formats. 

• CoT prompting: This technique involves breaking down a task into smaller and step-by-step 
instructions. This approach can improve the accuracy and clarity of the model’s responses.  
We implement this by adding a specific instruction to the user message field on Azure OpenAI 
Studio Chat Playground.

• Structured output: It specifies the desired output format in the prompt, in the user message field on 
Azure OpenAI Studio Chat Playground. It guides the model to produce responses that match your 
requirements, making parsing easier. 

• Temperature, top_p and other parameters: The parameters such as temperature and top_p control 
the randomness of the model’s output. Temperature determines how randomly the model predicts 
words, while top_p controls the length of the word list. This is why it is not advisable to play or 
change the values of both parameters simultaneously. For our solution, we adjust the temperature 
to 0.1, to prioritize precise responses. Other parameters such as strictness and retrieved documents 
can also be fine-tuned—to control the quality and relevance of the output. By understanding and 
effectively using these parameters, we can optimize the model’s performance and cost-efficiency.

The above system message and user message are inputs for the corresponding fields in the Azure 
OpenAI Studio Chat Playground. However, this will be the backend entity and the claims processor will 
have to input the 118-token prompt below on the UI that will be created to ensure seamless interaction 
between the claim processor and the LLM. 

“You are a claim processor. Your task is to process claims by resolving the edits and warning messages 
on a claim and provide recommendation on whether to pay, deny or pend the claim. Analyze the edit/s 
on this claim by referring to the relevant SOPs, validate the rules and provide your recommendation. 
Explain the step-by-step approach for your recommendation. In your recommendation, provide the 
reason to pay, deny or pend the claim.” If you are unable to process an edit or edits on a claim mention 
that you don’t know the answer , this is the standard prompt that applies to all edit codes in claims and 
serves as the input to the LLM to generate the output. 
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To create a user-friendly solution, a React.js-based application is developed. The UI includes three  
main tabs:

• Claim information: Displays detailed claim information, including provider, member, billing 
elements, authorization details and any edits or warnings.

• User query: Allows users to input prompts or questions related to the claim.

• Output: Presents the LLM-generated response or recommendation. A select group of SMEs will 
have access to a review pane—to validate the accuracy of the LLM’s output, contributing to the 
model’s improvement through RLHF. The findings of this review are presented in a tabular format 
and look something like this:

The review process involves auto populating claim ID, edit codes and reviewer information. SMEs mark 
a claim as accurately processed or not. If accurate, the remarks section is disabled; otherwise, SMEs 
must provide details about the error.

The model performance pane provides insights into the model accuracy and the list of edit code-wise 
steps where the LLM has failed. With prompt engineering for the POC, we look at a minimum model 
accuracy in the range of 50%–60%, with a prompt iteration limit of five to seven.

Claim ID Edit code/s warning 
message/s

Reviewed by Accurately processed
(Y/N)

Remarks if N

RAG

It is an LLM learning technique that merges the retrieval mechanisms and generative capabilities to 
enhance the performance of large language models. It enables LLMs to give relevant and domain-
specific responses versus generalized responses. In RAG architecture, there is no extra training. The 
LLM is pretrained using public data, but it generates responses that are augmented by information 
from the retriever. So, it uses the claims data and provides it as part of the prompt. Then it is used to 
query the LLM model and retrieve relevant data, and applied as an augmented context for the LLM. 
It is highly reliable when dealing with sensitive data such as PHI in healthcare. RAG can assist claims 
processors in decision making by providing up-to-date information and processing guidelines. The 
below diagram provides a view on the three elements of RAG working.



Understanding the basics of how RAG works

1. Retriever

Responsible for the initial 
step of retrieving relevant 
information from data sources. 
It uses retrieval techniques 
such as keyword-based 
search, document retrieval or 
structured database queries to 
fetch pertinent data.

Primary goal is to compile a 
set of contextually relevant 
information that can be used 
to enrich the user’s query.

2. Ranker

Refines the retrieved information 
by assessing its relevance  
or importance. It assigns scores 
or ranks to the retrieved data 
points, helping prioritize the 
most relevant ones.

Ensures the most pertinent 
information is presented  
to the generator for  
content generation.

3. Generator

Takes the retrieved and 
ranked information, along 
with the user’s original query 
and generates the final 
response and output.

Ensures that the response 
aligns with the user’s query 
and incorporates the factual 
knowledge retrieved from 
various data sources.

Unlike traditional databases for RAG implementation, we use a vector database to store vectors 
(fixed-length lists of numbers) along with other data items. This is primarily because vector databases 
outperform traditional databases as they do not require a predefined schema, can handle structured 
and unstructured data, and provide similarity search. For our use case, we use Azure AI Search as 
the vector database. The below diagram is an illustration of how the four components in the RAG 
pattern—app UX (which provides the user experience), app server or orchestrator (which is the 
integration code that coordinates the handoffs between information retrieval and the LLM), Azure AI 
Search (which is the information retrieval system) and the LLM (which in this case is ChatGPT 3.5 Turbo 
16K)—work together to generate a response.

App UX
App server, 
orchestrator

Azure AI search

Query knowledge

Prompt + 
knowledge response

Azure OpenAI (GPT/ChatGPT)

Data sources 
(files, database, etc.)

RAG architecture in Azure AI search
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In Azure AI Search, all searchable content is stored in a search index that’s designed for fast queries 
with millisecond response time as its internal data structures exist to support that objective. When we 
set up the data for our RAG solution, we use the features that create and load an index in Azure AI 
Search. An index includes fields that duplicate or represent our source content. An example of an index 
field in our case will be the edit codes. Once our data is in a search index, we use the query capabilities 
of Azure AI Search to retrieve content. The query stack in Azure AI Search has two main layers of 
execution—retrieval and ranking. 

• Retrieval: Often called L1, the goal of this step is to quickly find all the documents from the index 
that satisfy the search criteria—possibly across millions or billions of documents. These are scored 
to pick the top few (typically in the order of 50) to return to the user or to feed to the next layer. 
Azure AI Search supports three different L1 modes—keyword, vector and hybrid. 

• Keyword: Uses traditional full-text search methods, where the content is broken into terms 
through language-specific text analysis. The inverted indexes are created for fast retrieval and 
the BM25 probabilistic model is used for scoring.

• Vector: Enables you to find documents that are similar to a given query input which is based 
on the vector embeddings of the content.

• Hybrid: Performs both keyword and vector search and applies a fusion step to select the best 
results from each technique. Azure AI Search currently uses reciprocal rank fusion (RRF) to 
produce a single result set. Hybrid search brings out the best of keyword and vector search.

• Ranking: Also called L2, it takes a subset of the top L1 results and computes higher quality 
relevance scores to reorder the result set. It is critical for RAG applications to make sure the best 
results are in the top positions. L2 can improve L1’s ranking because it applies more computational 
power to each result using semantic ranking. In Azure AI Search, semantic ranker is a feature that 
measurably improves search relevance by using Microsoft’s language understanding models to 
rerank search results. It is a collection of query-side capabilities that improve the quality of the 
initial BM25-ranked search result for the input query. This feature provides the user with the top 
search results by reranking the existing result set, consisting of the top 50 results as scored by the 
BM25 ranking algorithm.

Revolutionizing claims adjudication using generative AI 15
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The semantic ranker can rank the top 50 results from L1. While hybrid search yields the best results, 
when it is combined with semantic ranking, it further enriches the search results. This is because 
semantic ranking puts the top three to five results at the top. Thus hybrid + semantic ranking finds the 
best content for the LLM at each result set size as indicated in the graph below:

In our case, we use hybrid search and semantic ranker. With RAG implementation for the POC, we aim 
for a minimum model accuracy in the range of 70%-80%.

POC model evaluation

To evaluate the performance of an LLM, we use accuracy as the metric. This will be done through 
a manual evaluation approach or RLHF, where the SME manually reviews the model’s generated 
outputs. The evaluation could yield the following two possibilities:

• Using prompt engineering, if we achieve 95% model accuracy, then we deploy it in production. 
Otherwise, we target at least 50%–60% with five to seven iterations of the prompt.

• Then we implement RAG and if we are able achieve 95% model accuracy, we deploy the model. 
However, if we don’t achieve the expected accuracy, then we will target at least 70%-80% and 
proceed to fine-tuning the model.

Hybrid retrieval with semantic ranking outperforms vector-only search
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Fine-tuning the model

Fine-tuning is a process to improve a pretrained model’s performance on specific tasks such as 
processing claims. It involves training the model on a smaller and specific data set. While it can 
significantly enhance the model’s accuracy, it’s a costly and time-consuming process. The cost 
of training a ChatGPT-3.5 Turbo 16K model depends on various factors, including the size of the 
training dataset and the number of training epochs. A critical point to go ahead with fine-tuning 
the model is to have a baseline performance which we have from the POC model. This will help 
determine if fine-tuning has improved the model’s performance. This is specifically the reason 
why we follow the below road map to build a customized model, taking into consideration the 
complexity and time/cost/organizational maturity.

C
om

pl
ex

ity

Time/cost/organizational maturity

Prompt 
engineering

Retrieval 
augmented 
generation

Fine-tuning

Fine-tuning the model
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In Azure OpenAI, we have the following two steps for fine-tuning.

• Upload your dataset: We recommend at least hundred excellent quality samples to start  
with our use case and then keep on increasing the size of the dataset till we achieve the expected 
model accuracy. 

• Create custom model: Azure OpenAI service employs the supervised fine-tuning method called 
LoRA, or low rank approximation, to fine-tune models in a way that reduces their complexity 
without significantly affecting their performance. This method allows us to fine-tune the model 
efficiently by adjusting only a small subset of its parameters, rather than the entire model. This 
significantly reduces training time and cost. We utilize Azure OpenAI Studio to implement LoRA 
and fine-tune our model. Once the fine-tuning process is complete, we deploy the customized 
model and evaluate its performance using RLHF. If the model doesn’t achieve the desired  
accuracy of 95%, we iteratively add more training data to refine its capabilities and help  
reach the target performance.

Now, to deploy this model, we have two options to choose from. The first one is to have the model 
integrated with the claims adjudication system. The second one is to deploy it outside this system but 
within the client environment. 

The first approach will result in an increase in auto adjudication percentage. However, the health plans 
will have to factor in additional budgets and capital expenses to modernize their existing adjudication 
platforms. Also, it presents several technical and operational challenges, which generally revolve 
around security, performance, integration complexity and compliance.

So, we adopt the second approach, where the gen AI model is hosted outside the adjudication engine 
but within the client’s environment. For the second approach, we deploy an RPA bot outside the claims 
adjudication platform—to segregate the claims with the shortlisted five edit codes for the POC. 

One of the key challenges that we encounter once the model is deployed to production is SOP 
updates. For this, we first determine the frequency as well as the impact of the updates and then 
obtain a buy-in from the client to inform us about the details at least two weeks in advance if it is 
a minor update and four weeks if it is a major one. This will provide us with ample time to make 
and test the necessary changes to the LLM, so that it can be deployed to production as and when 
the SOP update is effective. Since we are using Azure AI Search, for minor updates, which have an 
impact to the model output, the LLM can query the search index to find the most relevant documents 
dynamically at runtime. The retrieved documents are then fed as context to the model to generate 
responses. This approach requires no retraining of the model as the SOP updates reflect immediately 
by updating the search index. For major updates, we will fine-tune the model, so that it provides the 
most accurate and deeply integrated response patterns for our LLM.

Another point to consider is that Azure OpenAI regularly releases new model versions—to improve 
performance and add features. To ensure our solution stays up to date, we configure  
automatic updates using model versions when older versions are retired. However, it’s important  
to be aware of potential changes in model behavior after upgrades. To minimize disruptions,  
we review documentation, test our application with the new version and update our code and  
configuration as needed.
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Conclusion

This paper provides a detailed explanation of how to build a gen AI model to adjudicate claims, by 
leveraging Azure OpenAI service. Through comprehensive data collection, preprocessing, prompt 
engineering, RAG and fine-tuning, the model systematically assesses and recommends valid reasons 
to either pay, deny or pend the claim. Some of the key priorities for the future is to integrate the solution 
within the core claims adjudication system, making it platform-agnostic and exploring the possibility of 
applying the model with the necessary modifications to other areas in claims such as adjustments and 
payments. Having the model engrained within the adjudication engine will result in an increase in auto 
adjudication rate, thereby driving increased productivity gains. Reduced cost, enhanced scalability 
and interoperability are some of the outcomes that we achieve with a platform-agnostic solution. 
Lastly, by taking cues from this model, we can expand our gen AI footprint in the claims business—by 
building solutions in claims adjustments and payments.
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